SEMILINEAR ELLIPTIC PROBLEMS AND LINEAR SCHRÖDINGER OPERATORS IN LIPSCHITZ DOMAINS.

MOSHE MARCUS, TECHNION

We consider equations of the form $(*) - \Delta u + g(x, u) = 0$ in a bounded Lipschitz domain Ω in \mathbb{R}^N . Basic assumptions on g: (i) $g \in C(\Omega \times \mathbb{R})$, (ii) $g(x, \cdot)$ is monotone increasing and convex and g(x, 0) = 0 for every $x \in \Omega$; (iii) There exists a constant a > 0such that, for every positive solution u of (*), $g(x, u(x)) \leq au(x) \operatorname{dist}(x, \partial \Omega)^{-2}$. If u is a positive solution of (*) then u satisfies the Schrödinger equation $(**) - \Delta u + Vu = 0$ where V = g(x, u)/u. Note that by (ii) $V(x) \leq a \operatorname{dist}(x, \partial \Omega)^{-2}$. The connection between these two equations enables us to apply tools of harmonic analysis and potential theory to the study of boundary value problems for (*).

Our results include a necessary and sufficient condition on a positive Radon measure μ on $\partial\Omega$ for the existence and uniqueness of a solution of the Dirichlet b.v.p. for (*) with boundary data μ .

Our conditions on g hold for a wide class of functions including power and exponential nonlinearities.

1